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Abstract: The paper presents comparatively the dynamic responses of two variants of a given linkage: the 
classical four-bar mechanism and the five-DOF planar linkage, in which the connecting rod is fitted with 
rubber joints (flexi-blocks). There are briefly presented the structural and dynamic modelling of these 
linkages by means of the mechanisms’ classical model. Then, for the two variants, fitted with motor-reducers 
and producers, the dynamic responses are established.  
 
1. INTRODUCTION 
 

The increase of durability represents an important task in the mechanical 
transmissions’ design. One way to ensure superior performances consists in using 
optimized transmissions, in which the dangerous statical undetermined or hyperstatical 
constraints (which tend to block the mechanism) are eliminated; this desideratum can be 
achieved replacing some of the mechanism’s joints through appropriate joints of higher 
mobility and/or introducing some adequate supplementary joints. Thus, in the case of a 
planar crank-rocker linkage from Fig.1,a (used in the extraction of grained materials from 
silages) the elimination of the hyperstatical constraints can be made by the introduction of 
the supplementary joints E, F and G (Fig.1,b). From economical and constructive reasons, 
revolute joints with rubber core (flexi-blocks), like the elastic joints B and C (Fig.1,c) are 
frequently used instead of the joints E, F and G (Fig.1,b). The introduction of elastic joints 
doesn’t change the transmission’s overall dimensions, but it has significant effects in the 
mechanism kinematical and dynamic modelling. The connecting rod fitted with the elastic 
joints B and C (Fig. 1,c) can be modelled through the planar kinematical chain from Fig.1,d.  

The mechanism fitted with such a connecting rod can be studied based on the 
mechanisms’ classical model, if the springs and dampers from Fig.1,d are considered as 
entities of “motor/producer” type; in the premise that the deviations, from the theoretical 
configuration, are null, after isolation of the mechanical system from its motors and 
producers, the planar mechanism from Fig.1,e is obtained.  

After a concise dynamic models’ presentation, in the paper there are comparatively 
analysed the dynamic responses of the two variants of a crank-rocker linkage:  
a. a crank-rocker mechanism (Fig. 1,a) with rigid bodies and classical joints, and  
b. the mechanism in which the links of the connecting rod to the crank and rocker are 

modelled through flexi-blocks with longitudinal and transversal deformations, against 
the connecting rod (Fig. 1,e). 

The classical mechanism has the degree-of-freedom M=1 and L=2 external links, 
designated through the driving joint A and the resistant joint D (Fig.1,a). Therefore, this 
mechanism has: 
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Fig. 1 The crank-rocker mechanism: a) the classical variant, b) the isostatical variant (the connecting 
rod), c) the connecting rod fitted with elastic joints, d) the connecting rod fitted with springs and dampers on 

two directions, e) the mechanism with flexi-blocks 

a1) M=1 => one independent external motion (for instance: φ1) and L-M=1 => a 
transmission function for motions: φ3 = φ3(φ1) ⇒ ω3, ε3;

a2) M=1 => one transmission function for moments, e.g.: T1 = T1(φ1, T3).  
Unlike the classical crank-rocker linkage, the use of flexi-blocks brings an important 

constructive simplification, but increases the mechanism degree-of-freedom (Fig.1,e): the 
degree-of-freedom becomes M=5 and the L=6 external links are designated by the joints 
A, B1, B2, C1, C2 and D, with the external parameters ( 11 T,ϕ& ),( 33 T,ϕ& ), ( 1x1 P,x& ), ( 1y1 P,y& ), 
( 2x2 P,x& ) and ( 2y2 P,y& ), respectively. Therefore, the mechanism from Fig.1,e has:  
b1) M=5 independent external motions and, implicitly, L-M=1 => one transmission function 

for motions: φ3 = φ3(φ1, x1, x2, y1, y2) ⇒ ω3, ε3;
b2) M=5 transmission functions for moments and forces: T1 = T1(φ1, x1, x2, y1, y2, T3), Px1=

Px1(φ1, x1, x2, y1, y2, T3), Px2= Px2(φ1, x1, x2, y1, y2, T3), Py1= Py1(φ1, x1, x2, y1, y2, T3), 
Py2= Py2(φ1, x1, x2, y1, y2, T3).  

The establishment of the motion function relies on the development of the relations: 
BC = constant, for the first case (Fig.1,a), and BC = BC(φ1, x1, x2, y1, y2), for the second 
case (Fig.1,e). 
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The transmission functions for moments and forces were established using the 
Lagrange’s equations of second sort. 

 
2. THE DYNAMIC RESPONSE’S MODELLING 
 

The linkage’s dynamic responses can be now obtained coupling the mechanism to 
its motors and producers. For each of the two electromechanical systems (see Fig.1,a and 
e), after processing the 2L equations’ system (with L mechanism’s equations + L external 
links’ equations = 2L equations), M motion equations are obtained, which can be solved 
using the Matlab-Simulink software. The Simulink schemes for the analysed cases are 
presented in Fig.2 and 3, allowing to establish the variations in time of the specified 
unknowns:  φ1, φ3 ; T1, T3 for the classical mechanism (see Fig.1,a) and, φ1, φ3, x1, x2, y1,
y2; T1, T3, Px1, Px2, Py1, Py2, for the linkage with flexi-blocks (see Fig.1,e), respectively.  

 

Fig. 2 The Simulink scheme of the calculating programs for the classical mechanism from Fig.1,a 

The diagrams from Fig.4, 5 and 6 were obtained with the following numerical values 
(Fig.1): 
o For both variants (Fig,1,a and e): AD = 1.246 [m], AB = 0.12 [m], CD = 1.18 [m],          

ϕ1 = [0, 2π] rad and for the classical variant (Fig.1,a): BC = 0.4 [m] = constant; 
o The masses: the connecting rod m2 = 15 [kg], the rocker m3 = 75 [kg]; the masspoints 

of the connecting rod and rocker are situated in the middle of each element: BC/2 and 
CD/2 respectively;  

o The inertia moments: the crank J1 = 1 [kg m2], the connecting rod J2 = 0,075 [kg m2], 
relative to the masspoint, the rocker J3 = 0,15 [kg m2], relative to the centre of rotation D; 

o The springs rates (Fig.1,d): kx1 = ky1 = -1243,55.103 [N/m], kx2 = ky2= -1732,5.103 [N/m]; 
o The rubber dampers constants (Fig.1,d): kvx1 = kvy1 = - 500 [Ns/m], kvx2 = kvx2= -750 [Ns/m].  

The variations in time of the angular speeds, accelerations and moments of the 
rocker from the two variants of the crank-rocker linkage are represented in Fig. 4; the 
variations of the displacements from flexi-blocks x1, x2, y1 and y2, speeds 2121 y,y,x,x &&&& and 
accelerations 2121 y,y,x,x &&&&&&&& are represented in Fig. 5 and 6. 
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Fig. 3 The Simulink scheme of the calculating programs for  the mechanism from Fig.1,e 
 

The diagrams from Fig. 4, a, b, c highlight the influence of the flexi-blocks on the 
rocker motion, against the motion in the classical mechanism. It can be observed that the 
elastic deformations  from the flexi-blocks (xi and yi) have relativ small influences on the 
rocker speed ω3, acceleration ε3 and moment T3; these parameters have, in the both 
cases, a variation period about 0,075 [s].   

The flexi-blocks’ influences consist mainly in the interference of the amortized 
vibrations at the angular races’ extremities. 

The diagrams from Fig. 5 illustrate, comparatively, the deformations, speeds and 
accelerations from the longitudinal springs placed in joints B and C (see Fig.1,d); these 
variations have the same period about 0,075 [s]. But the deformation x1 from joint B 
(Fig. 5, a) is about ten times bigger than x2 from joint C (Fig. 5, a1) due to the inertial effect 
of the connecting rod and the forces that act in the flexi-blocks. Also, the speed 1x& (Fig. 5, 
b) of the spring from joint B has a continuos variation, proving that the spring is deformed 
continuosly, while the longitudinal spring from C is deformed very quikly, with a high value  

 

 700 

ANNALS of the ORADEA UNIVERSITY. 

 Fascicle of Management and Technological Engineering 



0 0.05 0.1 0.15 0.2 0.25

-10

-5

0

5

10

Time (second)
0.1 0.15 0.2 0.25

-15

-10

-5

0

5

10

15

Time (second)
a. 
 

0 0.05 0.1 0.15 0.2 0.25
-1500

-1000

-500

0

500

1000

1500

2000

Time (second)
0.1 0.15 0.2 0.25

-8

-6

-4

-2

0

2

4

6

8
x 104

Time (second)
b. 

 

0 0.05 0.1 0.15 0.2 0.25
-6000

-4000

-2000

0

2000

4000

6000

Time (second)
0.1 0.15 0.2 0.25

-6000

-4000

-2000

0

2000

4000

6000

Time (second)
c.

Fig.4 The variations of the angular speeds (a), angular accelerations (b) and torques (c) for the two variants 
of the crank-rocker mechanism 
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Fig. 5 The variations of the longitudinal displacements (a,a1), speeds (b,b1) and accelerations (c,c1) for the 
two variants of the crank-rocker mechanism 
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of the angular acceleration and then remains deformed till next race end  (periods of time 
in which  the spring speed and acceleration remain practically null).  

In Fig. 6 there are illustrated the deformations, speeds and accelerations from the 
transversal springs placed in joints B and C (Fig.1,d). The deformation y1 in joint B (Fig. 6, 
a) is about two times bigger than  the deformation y2 from joint C (Fig. 6, a1), but the two 
deformations take place aproximately in the same time. The diagrams of the angular 
speeds 1y& and 2y& (Fig. 6, b and b1) and accelerations 1y&& and 2y&& (Fig. 6, c and c1) highlight 
the behaviour of the transversal springs from joints B and C with respect to the time: the 
speed 1y& (Fig. 6, b1) and acceleration 1y&& (Fig. 6, c1) have a continuos variation, while the 
second transversal spring is deformed similarly, but a little more quikly (see the 
accelerations’ diagrams from Fig. 6). 

3. CONCLUSIONS 
 

The use of flexi-blocks, as a solution of mechanisms’ optimization, brings an 
important constructive simplification and, implicitly, a significant economical efficiency, but 
also, an increase of the mechanism degree-of-freedom.

The classical model of mechanisms can be also used in the study of mechanisms 
with flexi-blocks, if these are taken as entities of motor/producer type (i.e. as mechanism’s 
external links). 

For the establishment of the dynamic response of a mechanism with flexi-blocks, 
the mechanism isolated from its motors and producers is firstly analyzed and, afterwards, 
it is re-coupled to them.  

The kinematical and dynamical modelling of the transmissions with elastic joints or 
elements can not be decoupled: the displacements from the mechanism joints depend on 
the forces and moments that act on the mechanism elements. Therefore, the mechanism 
can be finally analysed only together with its motors and producers.  

There are some differences in the behaviour of the springs placed in joints B and C, 
which are due to the forces that act in the flexi-blocks and to the inertial effect of the 
connecting rod. Thus, the longitudinal spring from joint C is deformed very quickly and 
remains deformed till next race end, while the springs from joint B are continuously 
deformed.  

The methodology presented in this paper on the example of a planar mechanism, 
can be directly applied to spatial mechanisms, too; thus, the study of the dynamic effects 
of the deviations from the theoretical model becomes possible.  
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